

400 MHz RF Matrix

Configurable as 2x6, 2x12 or 2x36 RF Matrix

- 400MHz Bandwidth
- Software ConfigurableNo Jumpers!

Switches 30 Watts, 0.5

 Amps and 125VAC
High Density Coaxial Interfaces

- Excellent for Oscilloscope or Time Interval Counter Measurements

Racal Instruments ${ }^{\text {TM }} 1260-51$ is ideal for high performance RF switching. Its 400 MHz bandwidth makes the 1260-51 an excellent switch module for medium-speed digital, datacomm and most analog signals.

The $1260-51$ is an excellent choice for switching high frequency signals to an oscilloscope or counter/timer. Its wide bandwidth ensures that the test equipment sees fast, transient signals. The1260-51 is also ideal for switching high frequency signal sources, such as the Racal family of waveform synthesizers and signal generators, to the unit under test.

The 1260-51 consists of six, 2×6 matrices that may be combined into three, 2×12 or one, 2×36 matrix. The module automatically configures interconnection relays to achieve the path desired.

The 1260-51 provides a low noise switch path with excellent crosstalk and isolation. This performance allows the 1260-51 to switch signals in critical tests of amplifiers, receivers and other active devices.

Relay coil-current monitoring is avail-able to provide confidence checking by assuring the user of proper relay operation.

The 1260-51 is controlled by the Option 01 Smart Control Module which is explained in detail on a separate data sheet. All 1260 series control features are available on the 1260-51.

1260-51 PRODUCT SPECIFICATIONS

Maximum Switching Power	Crosstalk
$62.5 \mathrm{VA}, 30 \mathrm{~W}$	<-40dB to 100 MHz
Maximum Switching Voltage	Isolation
125VAC, 110VDC	$>60 \mathrm{~dB}$ to 100 MHz , Minimum
Maximum Switching Current	$>80 \mathrm{~dB}$ to 100 MHz , Typical
0.5 A AC	Switching Time (Including Settling)
0.5A DC	5 msec max.
Thermal EMF	Temperature
<20uV	Operating: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Insulation Resistance	Non-Operating: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
High to Low $>100 \mathrm{M} \Omega$	Humidity
High to Chassis >100 M Ω	$95 \pm 5 \% \mathrm{RH}$ non-condensing $<30^{\circ} \mathrm{C}$
Low to Chassis >100 M	$\begin{aligned} & 75 \pm 5 \% \mathrm{RH}>30^{\circ} \mathrm{C} \\ & 45 \pm 995 \% \mathrm{RH}>40^{\circ} \mathrm{C} \end{aligned}$
DC PERFORMANCE	Altitude
Path Resistance	Operating: 10,000ft
	Non-Operating: 15,000ft
	Shock (Functional) $30 \mathrm{~g}, 11 \mathrm{msec}, 1 / 2$ Sine Wave
AC PERFORMANCE (into 50Ω)	Vibration, Non Operating
Capacitance	0.013 inch double amplitude, $5-55 \mathrm{~Hz}$
Open Channel, Input to Ground	
<150pF (typical)	VXIBUS INTERFACE DATA
Closed Channel, Input to Ground <200pF (typical)	Cooling Requirements
Bandwidth (-3dB, 500hms)	Airflow: $2.0 \mathrm{l} / \mathrm{s}$
400 MHz (2x6 Basic cell)	Backpressure: $0.05 \mathrm{~mm} \mathrm{H}_{2} \mathrm{O}$
(typical 2×36 cell, 325 MHz)	With Option 01S/T
Insertion Loss	Airflow: $3.0 \mathrm{l} / \mathrm{s}$
<3dB @ 400MHz (2x6 Basic Cell)	Backpressure: $0.2 \mathrm{~mm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
Return Loss / VSWR	
14 dB @ 100MHz	
12dB @ 200MHz (typical)	

Peak and Dynamic Current

	+24V +5V	+5V w/Option 01
$I_{P m}$	6 mA * 400 mA	2.8A
$I_{\text {Dm }}$	0 mA 75mA	225 mA
* per	energized relay	
eight		
3.2 lb	$(1.45 \mathrm{~kg})$ without	Opt. 01
3.5 lb	(1.60 kg) with Opt	01

Dimensions

C-size, Single-slot, VXIbus Module
MTBF
Without relays: $\geq 240,000$ hours
Life Expectancy
$>500,000$ operations at $30 \mathrm{VDC}, 1 \mathrm{~A}$
>100 million mechanical operations
Typical Programming Syntax
Programming syntax is in the form:
"<module address>.<channel>"
Example: CLOSE 1.0020,0030
This CLOSE statement will close channel number 1 on the 1260-51 module at card address 2.

Note: Module is supplied with one set of mating connectors. Additional connectors can be ordered using the part numbers shown below.

ORDERING INFORMATION

MODEL/DESCRIPTION

Racal Instruments $1260-51,400 \mathrm{MHz}$ RF Matrix
Option 01, Smart Card Module (installed)
Option 01T, Smart Card Module (installed)
Coax Pin for Model 1260-51
Coax Cable Assembly, 1 GHz Cables, with Pins at Each End, 2ft. (-003, 6ft, -006, 12ft)
Crimp Tool for Coaxial Pin - Order Directly from Burndy Corp.

PART NUMBER
407612
OPT-401901-005
OPT-407531-001
602220-900
407368-001
Order Direct
*One Option 01 must be ordered with switch card(s). Please specify the card on which Option 01 will be installed

The EADS North America Defense Test and Services policy is one of continuous development, consequently the equipment may vary in detail from the description and specification in this publication.

